
Large-Scale Transient Sensitivity Analysis of a
Radiation-Damaged Bipolar Junction Transistor via
AD

Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

Sandia National Laboratories, Albuquerque NM 87185, USA†

Summary. Automatic differentiation (AD) is useful in transient sensitivity analysis of acom-
putational simulation of a bipolar junction transistor subject to radiation damage. We used
forward-mode AD, implemented in a new Trilinos package called Sacado,to compute analytic
derivatives for implicit time integration and forward sensitivity analysis. Sacado addresses
element-based simulation codes written in C++ and works well with forward sensitivity anal-
ysis as implemented in the Trilinos time-integration package Rythmos. The forward sensitivity
calculation is significantly more efficient and robust than finite differencing.

Key words: Sensitivity analysis, radiation damage, bipolar junction transistor, forward mode,
Trilinos, Sacado, Rythmos

1 Introduction

One of the primary missions of Sandia National Laboratories is certifying the safety, secu-
rity, and operational reliability of the USA’s nuclear weapons stockpile. Animportant as-
pect of this mission is qualifying weapon electronic circuits for use in abnormal (e.g., fire)
and hostile (e.g., radioactive) environments. In the absence of underground testing and with
the decommissioning of fast pulse neutron test facilities such as the SandiaPulsed Reactor
(SPR), emphasis has been placed on using computational modeling and simulation as a pri-
mary means for electrical system qualification. To further this objective,Sandia has been de-
veloping computer codes to simulate individual semiconductor devices and electronic circuits
subject to damage resulting from radioactive environments. In semiconductor devices, this ra-
diation damage creates displaced “defect” species that can move through the device, capture
and release electronic charge, and undergo reactions. Modeling of thisdefect physics intro-
duces many uncertain parameters into the computational model, and calibrating the model
with existing experimental data reduces the uncertainty in these parameters. In this paper we
discuss transient parameter sensitivity analysis of a bipolar junction transistor (BJT) subject

† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy under ContractDE-AC04-
94AL85000. This document is released as SAND2007-7767C.

2 Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

to radiation damage. The computed sensitivities provide information needed for a derivative-
based optimization method to calibrate the model, and also give detailed analysis of the ra-
diation damage mechanisms and their relative importance to device performance metrics, to
guide future model improvements. The semiconductor device and radiation defect physics are
implemented in a large-scale finite element code called Charon, developedat Sandia, which
uses the Trilinos solver collection [8] for linear solvers, preconditioners, nonlinear solvers,
optimization, time integration, and automatic differentiation. Transient sensitivities are com-
puted using a forward sensitivity method implemented in the Trilinos time integration package
Rythmos, with state and parameter derivatives computed via automatic differentiation using
the Trilinos package Sacado.

Much of the foundation for this work has been discussed previously [4], where our ap-
proach for computing derivatives in large-scale element-based applications like Charon was
presented. In that paper we discussed the implementation details and performance of comput-
ing state Jacobians and Jacobian-transpose products on a simple convection diffusion problem,
using the C++ AD tools Fad [3] and Rad [6]. Here we report on the application of that approach
to the full radiation defect semiconductor device physics model implemented in Charon and
extend it to include parameter derivatives, observation functions and transient sensitivities. In
Sect. 2, we review the element-level approach for computing derivatives in large-scale appli-
cations. The automatic differentiation tools Fad and Rad have been incorporated into a new
AD package called Sacado and have become part of Trilinos. We discuss this package in more
detail in Sect. 3. The transient sensitivity approach as implemented in the Trilinos package
Rythmos is discussed in Sect. 4, and the radiation defect physics for the bipolar junction tran-
sistor is presented in Sect. 5. Finally, we discuss the transient sensitivity analysis of the BJT
in Sect. 6, comparing the overall performance of the approach to a black-box style finite dif-
ference method. We found the intrusive approach using AD and forward transient sensitivities
to be significantly more efficient and robust than the finite-difference approach. The Trilinos
packages discussed here, including Sacado and Rythmos, are available in Trilinos 8.0 [1].

2 Differentiating Element-Based Models

Here we provide a brief overview of the approach for computing derivatives of element-based
models published previously [4]. In general we are interested in modelsthat (possibly af-
ter some spatial discretization) can be represented as a large system of differential algebraic
equations

f (ẋ,x, p, t) = 0,

ĝ(p, t) = g(ẋ(t),x(t), p, t),
0≤ t ≤ T (1)

wheret ∈ R is time,x, ẋ ∈ R
n are the state variables and their time derivatives,p ∈ R

m are
model parameters andg : R

2n+m+1 → R
l is one or more observation functions. Typically we

refer to f : R
2n+m+1 → R

n as the global residual and ˆg as the reduced observation. For the
purposes of this paper, we think ofn as possibly very large, on the order of millions, whilem
is reasonably small, on the order of 100 andl is on the order of 1 to 10. For element-based
models,f can be decomposed as the sum

f (ẋ,x, p, t) =
N

∑
i=1

QT
i eki

(Piẋ,Pix, p, t) (2)

over a large number of elementsN taken from a small set{ek} of element functionsek :
R

2nk+m+1 → R
nk where eachnk is at most a few hundred. Here we are using the term “ele-

Transient Sensitivity Analysis of a BJT 3

ment” in a generic sense not restricted to finite-element models. The matricesPi ∈ R
nki×n and

Qi ∈ R
nki×n map global vectors to the local element domain and range spaces respectively.

Typically g has a similar decomposition. As discussed in [4], for systems that are a spatial
discretization of a set of PDEs, one must distinguish between interior elements that are de-
composed as above and boundary elements that have some other set of boundary conditions
applied. The extension of (2) to include boundary conditions is straightforward and will not be
treated here. For implicit time integration and transient sensitivity analysis, one must compute
the following derivatives, which have corresponding decompositions into element derivatives:

α
∂ f
∂ẋ

+β
∂ f
∂x

=
N

∑
i=1

QT
i

(

α
∂eki

∂ẋ
+β

∂eki

∂x

)

Pi,
∂ f
∂p

=
N

∑
i=1

QT
i

∂eki

∂p
(3)

for given scalarsα andβ . As discussed in [4], computing the element derivatives in (3) is
well suited to automatic differentiation because they involve relatively few independent and
dependent variables, do not involve a large number of operations, and do not require parallel
communication. Moreover the complexity of the AD calculation is independent of the number
of elements.

3 Automatic Differentiation with Sacado

In previous work [4], the feasibility and efficiency of computing the element derivatives (3) in
the C++ finite-element simulation code Charon using the AD tools Fad [3] andRad [6] was
discussed. Since that work, we have made AD tools based on Fad and Rad into a new package
called Sacado that is now part of the Trilinos collection. This package provides operator over-
loading for forward, reverse, and Taylor mode automatic differentiation in C++ codes. The
forward mode tools are based on Fad and use expression templates forefficiency, but have
been completely redesigned to support a more flexible software design and conformance to
the C++ standard. The new tools use the same interface as Fad, allowing drop-in replacement
for Sacado. The reverse mode tools are essentially a repackaging of the original Rad, but also
provide enhanced debugging modes and better support for passivevariables (variables which
are really constants but are declared to be an AD type, see [4] for why these are a nuisance for
Rad). The Taylor mode is a simple but efficient univariate Taylor polynomial implementation
that uses handles instead of expression templates. All tools are templated topermit nesting
AD types for computing higher derivatives.

As discussed in [4], our approach for applying these AD types to application codes is to
template the C++ code that computes the element functionsek and to instantiate this tem-
plated code on the AD types. At the start of each element computation for agiven derivative
calculation, a preprocess operator is used to map the global solution vectors x and ẋ to the
local element space (P mapping from Eq. (2)) and initialize the corresponding AD type for
the independent variables. Then the template instantiation of the element function for this AD
type is called to compute the element derivative. Finally a post-process operator extracts the
derivative values (from either independent or dependent variablesdepending on the AD type)
and sums them into the global derivative objects (Q mapping). The manual part of the dif-
ferentiation process is contained within these preprocess and post-process operators, and new
operators must be defined each time new AD types are added to the code.However the physics
and its finite element discretization is contained within the templated element functionsek, and
therefore the process of differentiating new physics is completely automatic.

4 Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

Ideally the interface between the pre/post-process operators and element functions would
be the only place in the code where templated code must be called from non-templated code,
but in practice there are numerous such places. To encapsulate this interface and facilitate
easy addition of new AD types, a template manager and iterator are provided by Sacado to
store the different instantiations of templated application code classes and loop over them in
a type-independent way. The ideas of template meta-programming [2] are used to implement
this cleanly. Also, analysis tools such as sensitivity computations and optimization require an
application code interface to set, retrieve, and compute derivatives with respect to parameters.
However, application codes rarely provide such an interface and therefore Sacado provides a
simple parameter library class to facilitate computing parameter derivatives by AD.

All of these tools have been incorporated into Charon to enable computationof first and
second derivatives with respect to both state variables and parameters. As discussed in [4],
this approach is highly intrusive to the application code and has required significant software
engineering to incorporate into Charon. While complicated and certainly notblack-box, we
have found this approach highly effective for computing derivativesin large-scale, parallel,
evolving physics application codes, both in terms of the computational costof the derivative
calculations [4] and the human time required to develop and maintain the code. Since incorpo-
rating Sacado into a large-scale application code is as much (if not more) about the software
engineering to support the templating than the AD itself, Sacado provides a small one dimen-
sional finite element application called FEApp to demonstrate these tools and techniques.

4 Transient Sensitivity Analysis with Rythmos

The Rythmos package in Trilinos implements selected explicit and implicit time integration
solvers based on the IDA package [9]. In this study, we employed a variable-order, vari-
able step-size backward-difference time integrator (BDF) to solve the initial value state equa-
tions (1) and the forward sensitivity problem

∂ f
∂ẋ

(

∂ẋ
∂p

)

+
∂ f
∂x

(

∂x
∂p

)

+
∂ f
∂p

= 0,

∂ĝ
∂p

=
∂g
∂ẋ

∂ẋ
∂p

+
∂g
∂x

∂x
∂p

+
∂g
∂p

,

0≤ t ≤ T (4)

given appropriate initial conditions. Rythmos uses a highly modular object-oriented infras-
tructure based on the abstract numerical algorithm approach of Thyra[1], where the sensitivity
equations in (4) are formulated as a single implicit ODE and solved using a stepper class that
also solves the forward state equations (1). A small amount of coordinating code is used to ef-
ficiently implement thestaggered corrector forward sensitivity method [5], where each (non-
linear) state time step is solved to completion before the (linear) sensitivity time step equation
is solved for the update to the sensitivities∂x/∂p. The observation functiong and the reduced
sensitivity∂ĝ/∂p are then computed at the end of each time step using an observer subclass.
An error control scheme based on local truncation error estimates is employed to control errors
on the statesx, but error control for the sensitivities∂x/∂p is not currently implemented (in
the future this limitation will be removed). The Trilinos package NOX [1] solves the implicit
BDF time step equations, and numerous direct and iterative linear solversand preconditioners
provided by Trilinos can be used to solve the resulting linear systems of equations through a
single abstract interface provided by the Trilinos package Stratimikos [1]. Finally, the Sacado
AD classes are used to efficiently provide accurate partial derivatives∂ f /∂ẋ, ∂ f /∂x, ∂ f /∂p,
∂g/∂ẋ, ∂g/∂x, and∂g/∂p for the Rythmos forward state and sensitivity solver code.

Transient Sensitivity Analysis of a BJT 5

(a) (b)

Fig. 1. Scanning electron microscope image of an NPN BJT (a) and diagram of the emitter (E),
base (B), and collector (C) regions (b). The simulation domain is a 9x0.1micron slice (white
vertical line) below the emitter contact with contacts at each end and a contact embedded in
the strip representing the base contact.

5 Radiation Defect Semiconductor Device Physics

We are interested in applying the transient sensitivity analysis technique discussed in the pre-
vious section to computational models of semiconductor devices subject toradiation damage.
In this section we provide a brief description of the radiation defect semiconductor device
physics implemented in the physics code Charon developed at Sandia, applied to an NPN
bipolar junction transistor (BJT) shown in Fig. 1(a). Modeling this physics isquite detailed
and due to space constraints not all aspects of the model nor its implementation in Charon are
discussed (more details can be found in [7]). As shown in Fig. 1(b), a BJT is a device with
three electrical contacts referred to as the emitter (E), base (B), and collector (C). Each contact
is attached to the boundary of a region of the device where the silicon lattice has been mod-
ified by the introduction of impurities to produce an abundance of free electrons (N-doping)
in the emitter and collector regions or holes (P-doping) in the base region [12]. Charged car-
riers (electrons and holes) flow through the device as dictated by the electric field in the body
and the electric potential or carrier flux prescribed at the contacts. Whena device is exposed
to a radiation environment, the radiation interacts with the device’s lattice material and may
“knock out” an atom within the lattice, leaving a vacancy (a void) and an interstitial (free
material atom), referred to as a Frenkel pair. These vacancies and interstitials (collectively re-
ferred to as defect species) can carry charge, move throughout the device, and interact through
various reactions such as capture/release of electrons/holes and recombination. The diffusion
and transport of carriers and defect species are governed by the following partial differential
equations [12]:

−∇ ·
(

λ 2∇ψ
)

=

(

p−n+C
N

∑
i=1

ZiYi

)

(5)

∇ · (−µnn∇ψ +Dn∇n) =
∂n
∂t

+Rn (6)

∇ ·
(

µp p∇ψ +Dp∇p
)

=
∂p
∂t

+Rp (7)

∇ · (µYiYi∇ψ +DYi ∇Yi) =
∂Yi

∂t
+RYi , i = 1, . . . ,N (8)

whereψ is the scalar electric potential,n andp are the electron and hole concentrations,Yi is
the concentration of defect speciesi for i = 1, . . . ,N, Zi is the integer charge number of defect
speciesi, C is the static doping profile,λ is the minimal Debye length of the device,Rx is

6 Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

Table 1. Sample of the 84 defect reactions and corresponding parameters. Column # refers
to the parameter number in Fig. 2. Superscripts denote charge states,V refers to a vacancy,
BV to a boron-vacancy complex,PV to a phosphorous-vacancy complex,σ to the reaction
cross-section and∆E to the reaction activation energy.

Reaction Parameter Value # Reaction Parameter Value

13 e− +V− →V−− σ 3.0e–16 46 e− +PV 0 → PV 0 σ 1.5e–15
14 V−− → e− +V− ∆E 0.09 79 h+ +V− →V 0 σ 3.0e–13
15 V−− → e− +V− σ 3.0e–16 83 V+ → h+ +V 0 ∆E 0.05
16 e− +V 0 →V− σ 2.4e–14 83 V+ → h+ +V 0 σ 3.0e–15
40 e− +BV+ → BV 0 σ 3.0e–14109 h+ +PV− → PV 0 σ 3.9e–14

the generation and recombination term for speciesx, andDx and µx are the diffusivity and
mobility coefficients for speciesx.

The generation/recombination termsRn, Rp, RYi , i = 1, . . . ,N are a sum of source terms
arising from the defect reactions. We are primarily interested in carrier-defect reactions such
asXm → Xm+1 + e− that contribute a source term of the form

RXm+1 = σAXm exp

(

∆E
kT

)

, (9)

where σ is the reaction cross-section,A is a constant,∆E is the activation energy,k is
Boltzmann’s constant andT is the lattice temperature. HereX represents a defect species
and superscripts denote charge state. The corresponding source term for the capture reaction
Xm+1 + e− → Xm has the same form as (9), but with zero activation energy. Similar reactions
for release and capture of holesh+ are also included. For the problem of interest, there are
a total of 84 carrier-defect reactions among 35 defect species. A few of these reactions along
with their activation energy and cross-section values are summarized in Table 1.

Equations (5-8) are discretized in Charon using a Galerkin finite-elementmethod with
two-dimensional bilinear basis functions on quadrangle mesh cells and streamline upwind
Petrov-Galerkin (SUPG) stabilization [10, 11]. To keep the problem size reasonable, we chose
only to simulate a pseudo one-dimensional vertical strip (9x0.1 micron) through the BJT as
shown in Fig. 1(b) — a full two-dimensional simulation would require abouta week of com-
puting time on 1000 processors. Dirichlet boundary conditions for the electric potential are
applied at each end of the strip, representing the emitter and collector contacts, and also at the
emitter-base junction to represent the base contact. The resulting ordinary differential equa-
tions are then integrated forward in time using Rythmos, as discussed in the previous section.
Forward mode AD in Sacado is used to differentiate the finite-element residual equations: we
used the approach described in Sect. 2 to compute the Jacobian and massmatrices for the
implicit time integration methods, as well as to compute the analytic derivativeswith respect
to reaction cross-sections and activation energies for each time step, asrequired for transient
sensitivity analysis.

For comparison to experimental data, the electric current at the base contact is computed as
the net carrier flux through the contact and supplies the observation functiong. This calculation
naturally decomposes into a set of element computations that can be differentiated via AD in

Transient Sensitivity Analysis of a BJT 7

a manner similar to that discussed in Sect. 2 to compute the requisite partial derivatives in (4)
for sensitivity analysis.

6 Analysis of a Radiation Damaged BJT

There is significant uncertainty in the defect reaction cross-section andactivation-energy pa-
rameters that can be reduced by calibrating the computational simulation against (existing)
experimental data. To this end, we applied the transient sensitivity method discussed in Sect. 4
to the BJT model from Sect. 5 to compute sensitivities of the electric currentat the base
contact with respect to all 126 defect reaction parameters, for later use in a derivative-based
optimization method to calibrate the model. Dirichlet boundary conditions for the electric po-
tentialψ are applied at all three contacts, with values of –0.589 (emitter), 0 (base) and 10.21
(collector). Zero Dirichlet boundary conditions are also applied at the emitter and collector
contacts for vacancies, and silicon and boron interstitials. Natural boundary conditions for
carriers and all other defect species are applied throughout the boundary. A radiation pulse
is simulated by applying a transient source term for generation of Frenkel pairs and elec-
tron/hole densities (ionization), as shown in Fig. 3(a). We ran the transientsensitivity calcu-
lation over a time interval of[0,1], using Rythmos’s adaptive step-size, variable-order BDF
method with an initial time step size of 10−8 and relative and absolute error tolerances of
10−3 and 10−6 respectively. The variable-order method was restricted to a fixed order of 1
(backward-Euler method) because Charon exhibited unphysical oscillations with higher-order
methods that currently we have not been able to eliminate. The implicit time stepequations
were solved by NOX using an undamped Newton method with a weighted root-mean-square
update-norm tolerance of 10−4. The Newton and sensitivity linear systems were solved by
AztecOO using preconditioned GMRES with a tolerance of 10−9 (Newton) and 10−12 (sensi-
tivity) and Ifpack’s RILU(2) preconditioner with one level of overlap.The calculation was run
on Sandia’s Thunderbird cluster using 32 processors with a discretization of 2770 mesh nodes
and 39 unknowns per node (108,030 total unknowns). Scaled sensitivities of the base current
with respect to all parameters at early and late times after the radiation pulseare shown in
Fig. 2, along with transient sweeps of two of the dominant sensitivities in Fig.3(b). For each
parameter, the scaled sensitivity is given by(p/I)(dI/d p) wherep is the parameter value,I is
the (base) current, anddI/d p is the transient sensitivity. A simulation without sensitivities but
with identical configuration otherwise requires approximately 105 minutes of computing time,
whereas the transient sensitivity calculation for all 126 sensitivities took approximately 931
minutes. Note that because the forward sensitivity solver currently doesnot implement error
control for the sensitivities (as described in Sect. 4), we found by trial and error the tighter
10−12 linear solver tolerance was necessary to compute the sensitivities stably.

The primary goal for computing these sensitivities is for later use in a derivative-based
optimization method for model calibration. However the relative sensitivitiesdisplayed in
Fig. 2 also provide important qualitative information by clearly demonstrating which are the
dominant parameters and that only a small fraction of the 126 parameters have non-trivial
sensitivities. This suggests that an optimization over the 10-15 dominant parameters would
likely be just as successful as over the full set, reducing the cost of themodel calibration. It
also suggests the physics associated with these parameters would be a good target if refinement
of the computational model proved necessary.

The typical approach at Sandia for obtaining this sensitivity information is through non-
invasive finite-difference methods. However given the small magnitudes of many of the pa-
rameters (see Table 1), it is uncleara priori what reasonable perturbation sizes would be. We

8 Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125

−0.4

−0.2

0

0.2

0.4

0.6

Parameter

S
ca

le
d

S
en

si
tiv

ity

time = 1.0e−03

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125

−0.4

−0.2

0

0.2

0.4

0.6

Parameter

S
ca

le
d

S
en

si
tiv

ity

time = 1.0

Fig. 2. Scaled transient base current sensitivities at early and late times of the BJT device
with respect to the cross-section and activation energy parameters. Sensitivities are scaled to
(p/I)(dI/d p) wherep is the parameter value,I is the base current, anddI/d p is the unscaled
sensitivity.

10
−8

10
−6

10
−4

10
−2

10
0

0

2

4

6
x 10

19

P
ul

se

Pulse

10
−8

10
−6

10
−4

10
−2

10
0
−1

0

1

2
x 10

−8

B
as

e
C

ur
re

nt

Time (s)

Base Current

(a)

10
−8

10
−6

10
−4

10
−2

10
0

−5

−4

−3

−2

−1

0
x 10

4

Time (s)

S
en

si
tiv

ity

Parameter 16
Parameter 46

(b)

Fig. 3. (a) Frenkel pair (vacancies and silicon interstitials) and ionization (electron/hole) den-
sity source term simulating a radiation pulse (solid curve) and resulting basecurrent (dashed
curve). (b) Transient history of (unscaled) sensitivities 16 and 46 from Fig. 2. Unscaled sensi-
tivities are shown because the currentI passes through zero creating a singularity in the scaled
sensitivity.

compared computing sensitivities using first-order finite differencing to the direct method in
Rythmos and found, not surprisingly, that the Rythmos approach was much faster and more
robust. In Table 2, the magnitude of the relative difference in the base current sensitivity with
respect to parameter 16 between Rythmos and first-order finite differencing is shown at several

Transient Sensitivity Analysis of a BJT 9

Table 2. Magnitude of relative difference in base current sensitivities between Rythmos and
first-order finite differencing, at several times and with several finite-difference perturbation
sizesε, for parameter 16. Hereε is the relative perturbation size, the absolute perturbation
size isε|p|, wherep is the value of the parameter (2.4e–14). The absolute difference in all
sensitivities is of the order 103 to 104.

Time ε = 10−0 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

10−4 2.7769 0.2219 0.2425 0.3137 0.3143 0.3179 0.3539
10−3 0.0888 0.0218 0.0094 0.0118 0.0123 0.0123 0.0124
10−2 0.0659 0.0433 0.0520 0.0625 0.0979 0.4599 4.0786
10−1 0.0971 0.2159 0.0392 0.0543 0.0528 0.0501 0.0573
10−0 0.2724 0.0766 0.1288 0.1602 0.1647 0.1673 0.0681

times for several relative finite-difference perturbation sizes. Generally speaking, the finite-
difference value is not terribly sensitive to the perturbation size, but there is no clear single
choice that would yield good accuracy for all time points. The difficulty with computing these
sensitivities using finite differencing is that parameter perturbations induce variations in time-
step sizes that add noise to the sensitivity calculation. This noise can be reduced by tightening
the time integrator error tolerances, but this may come at considerable additional computa-
tional cost. Clearly computing sensitivities in this way is hard to make robust, which can be
critical when embedded in a transient optimization calculation. Moreover, computing sensi-
tivities by finite differencing for this problem is drastically more expensive. Computing all
126 sensitivities via first-order finite differences would take roughly 13,000 minutes (about 9
days) of computing time on 32 processors, compared to 931 minutes using the direct approach
in Rythmos. There are three reasons for this difference in cost, all stemming from the fact that
each finite-difference calculation requires a full time integration: all of thesensitivities during
the early portion of the time integration are zero (which require no work forthe sensitivity
linear solves), because the sensitivity equations are linear, they only require one linear solve
per time step instead of a full Newton solve, and finally the sensitivity linear solves typically
require significantly fewer linear solver iterations than the Newton linear solves (currently it
is unclear why this is the case).

7 Concluding Remarks

We have described the transient sensitivity analysis of a computational simulation of a bipolar
junction transistor subject to radiation damage, work that is a step toward a full transient opti-
mization for model calibration. The combination of AD, as implemented in the new Trilinos
package Sacado, and the forward sensitivity method in the Trilinos time integration package
Rythmos provided efficiency and robustness.

In the future we plan to embed these sensitivity calculations in transient optimization algo-
rithms (provided by MOOCHO, another new Trilinos package) for full model calibration and
parameter estimation. For this to succeed, controlling the accuracy of the sensitivity computa-
tions is critical; such control is virtually impossible with finite differencing. Thenext step is to

10 Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra

implement full error control on the sensitivity equations. Applying the error control strategies
already in Rythmos to the sensitivity equations should be straightforward.

Typically for an optimization over a parameter space of the size studied here (126), one
would expect an adjoint sensitivity approach using reverse-mode AD tobe more efficient.
While Sacado does provide a reverse-mode capability, this approach would also require an
adjoint-enabled time integrator in Rythmos, which has not yet been completely implemented.
In the future we do plan to implement adjoint sensitivities in Rythmos, leveraging Sacado for
local adjoint sensitivities of the model to further speed up the model calibration problem.

References

1. Trilinos packages Sacado, Rythmos, NOX, Thyra, Stratimikos, AztecOO and Ifpack are
available at the Trilinos web sitehttp://trilinos.sandia.gov

2. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming. Addison-Wesley, Boston
(2005)

3. Aubert, P., Di Ćesaŕe, N., Pironneau, O.: Automatic differentiation in C++ using expres-
sion templates and application to a flow control problem. Computing and Visualisation
in Sciences3, 197–208 (2001)

4. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation of C++ codes for large-
scale scientific computing. In: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Don-
garra (eds.) Computational Science – ICCS 2006,Lecture Notes in Computer Science,
vol. 3994, pp. 525–532. Springer, Heidelberg (2006)

5. Feehery, W.F., Tolsma, J.E., Barton, P.I.: Efficient sensitivityanalysis of large-scale
differential-algebraic systems. Appl. Numer. Math.25(1), 41–54 (1997)

6. Gay, D.M.: Semiautomatic differentiation for efficient gradient computations. In: H.M.
Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.) Automatic Differentiation:
Applications, Theory, and Tools, Lecture Notes in Computational Scienceand Engineer-
ing. Springer (2005)

7. Hennigan, G.L., Hoekstra, R.J., Castro, J.P., Fixel, D.A., Shadid, J.N.: Simulation of neu-
tron radiation damage in silicon semiconductor devices. Tech. Rep. SAND2007-7157,
Sandia National Laboratories (2007)

8. Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long,
K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring,
J., Williams, A., Stanley, K.: An overview of the Trilinos package. ACM Trans. Math.
Softw.31(3) (2005)

9. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Wood-
ward, C.S.: Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw.31(3), 363–396 (2005)

10. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for compu-
tational fluid dynamics: V. Cicumventing the Babuska-Brezzi condition: Astable Petrov-
Galerkin formulation of the Stokes problem accomodating equal order interpolation.
Computer Methods in Applied Mechanics and Engineering59, 85–99 (1986)

11. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for compu-
tational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive
equations. Computational Methods Applied Mechanics and Engineering73, 173–189
(1989)

12. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley & Sons (1981)

